Tetrahedron Letters No. 34, pp 2959 - 2960, 1976. Pergamon Press. Printed in Great Britain.

2π + 8π CYCLOADDITION REACTIONS OF 3-OXIDOPYRIDINIUM BETAINES¹

Nicholas Dennis, Alan R. Katritzky* and Gebran J. Sabounji

School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ

(Received in France 3 June 1976; received in UK for publication 29 June 1976)

We have reported cycloadditions of 3-oxidopyridinium betaines <u>1</u> in which they act as 4π -components (adding $2\pi^2$ or $6\pi^3$ addends across the 2, 6-positions) or as $2\pi/6\pi$ components (adding thermally $4\pi^4$ or photochemically $2\pi/6\pi^5$ addends across the 2, 4positions). We now describe cycloadditions in which they act as 8π components, adding 2π addends across the oxygen and the carbon 4.

Dichloroketene (2, R' = C1) generated <u>in situ</u> from dichloroacetyl chloride⁶ or from chloral,⁷ in the presence of betaines <u>la-d</u>⁸ gave, we believe <u>via</u> intermediates <u>3</u> which spontaneously lost HC1, the new bicyclic compounds <u>4a-d</u> (Table).⁹ Monochloroketene (2, R' = H) generated from monochloroacetyl chloride¹⁰ yielded compound <u>4e</u> (R' = H) (Table). For example, treatment of 3-hydroxy-1-phenylpyridinium chloride¹¹, the precursor of betaine <u>1b</u>¹² and dichloroacetyl chloride in CH₂Cl₂ with NEt₃ at 0°C gave the adduct <u>3H-7-oxo-3-phenylfuro[3, 2-d]</u> pyridine, <u>4b</u>. The structures <u>4</u> are supported by UV, NMR and mass spectra; the IR spectra (Table) are characteristic for $\alpha\beta$ -unsaturated γ -lactones.¹³ The NMR spectrum had a 1H doublet at δ 6.90 (<u>J</u> = 8 Hz), a <u>5H</u> multiplet at δ 7.50, a 1H doublet of doublets at δ 8.10 (<u>J</u> = 8 and 2 Hz) and a 1H fine doublet at δ 8.30 (<u>J</u> = 2 Hz) assigned to the olefinic H-5, the phenyl, the olefinic H-4 and H-2 protons of <u>4c</u> respectively.

 $R = \underline{a}$, CH_2Ph ; \underline{b} , Ph; \underline{c} , 3, 5-dimethoxy-2, 4, 6-triazin-1-yl; \underline{d} , 3, 5-dimethyl-2, 6pyrimidin-1-yl; \underline{e} , Ph. R' = Cl for $\underline{a} - \underline{d}$; R' = H for \underline{e} . Ketenes generally undergo concerted $\pi 2s + \pi 2a$ cycloadditions, ¹⁴ although formal $2\pi + 4\pi$ additions of ketenes have been reported. ¹⁵ Recently, dichloroketene (2, R' = Cl) was reacted ¹⁶ with tropone in a $2\pi + 8\pi$ sense to yield a bicyclic lactone by elimination of HCl from an intermediate dichlorolactone.

TABLE. PHYSICAL PROPERTIES OF 3-SUBSTITUTED-7-OXO-3H-FURO[3,2-d]PYRIDINES

Cpd.	$IR(\nu_{max})(CHBr_3)(film)$				$\lambda_{\text{max}} (\log \epsilon) (CH_3 CN)$	Crystal form, m.p. (^o C)
	C =O	C≂C	C=N	N-C = C		solvent, yield (%)
<u>4a</u>	1740	1545			408 (4.47), 396s (4.37), 265 (3.80)	gold flakes, 279–280 ⁰ (EtOH)(25%)
<u>4b</u>	1730	1660			366 (4.70), 235 (3.00)	yellow needles, 222-223 ⁰ (EtOH) (57%)
<u>4c</u>	1734		1600	1670	398 (4.34), 378 (4.36), 217 (3.56)	red needles 245-246 ⁰ , (DMSO) (30%)
<u>4d</u>	1740	1610		1660	396 (4.46), 374 (4.06), 237 (3.08)	orange-red needles, 275- 276 ⁰ (EtOH) (85%)
<u>4e</u>	1740	$1660 \\ 1640$			367 (4.60), 245 (3.00)	needles 220-222 ⁰ (dec) (MeOH/EtOEt) (25%)

REFERENCES

- Part XXX in the series '1, 3-Dipolar Character of Six-membered Aromatic Rings'. Part XXIX, G. Guiheneuf, C. Laurence, and A.R. Katritzky, <u>J. Chem. Soc. (Perkin I)</u>, in press.
- (2) A.R. Katritzky and Y. Takeuchi, J. Am. Chem. Soc. 92, 4134 (1970)
- (3) N. Dennis, B. Ibrahim and A.R. Katritzky, J. Chem. Soc. (Chem. Commun) 425 (1975)
- (4) N. Dennis, B. Ibrahim and A.R. Katritzky, J. Chem. Soc. (Chem. Commun) 500 (1974)
- (5) N. Dennis, A.R. Katritzky and H. Wilde, submitted for publication in <u>J. Chem. Soc.</u> (Perkin I)
- (6) H.C. Stevens, D.A. Reich, D.R. Brandt, K.R. Fountain and E.J. Gaughan, J. Am. Chem. Soc. 87, 5257 (1965)
- (7) F.L. Luknitskii, Chem. Revs. 261 (1975)
- (8) The preparations of 1a, 1c and 1d have been described earlier in this series
- (9) All new compounds synthesised gave satisfactory elemental analyses
- (10) Monochloroketene generated in situ by modification of the method described in Ref 6
- (11) C.F. Koelsch and J.J. Carney, J. Am. Chem. Soc. 72, 2285 (1950)
- (12) N. Dennis, A.R. Katritzky, T. Matsuo, S.K. Parton, and Y. Takeuchi, J. Chem. Soc. (Perkin I) 746 (1974)
- (13) R.N. Jones, C. L. Angell, T. Ito and R. J. D. Smith, Cand. J. Chem. 37, 2007 (1959)
- (14) T. L. Gilchrist and R.C. Storr, <u>Organic Reactions and Orbital Symmetry p. 158</u>. Cambridge Univ. Press (1972)
- (15) G. Desimoni and G. Tacconi, Chem. Rev. 75, 675 (1975)
- (16) J. Ciabattoni and H.W. Anderson, Tetrahedron Letters 3377 (1967)